$( Modified version of demo0.mm from 1-Jan-04 $)

$(
PUBLIC DOMAIN DEDICATION

This file is placed in the public domain per the Creative Commons Public
Domain Dedication. http://creativecommons.org/licenses/publicdomain/

Norman Megill - email: nm at alum.mit.edu
$)

$c 0 + = -> ( ) term wff |- $.

$v t r s P Q $.

$f term t $.
$f term r $.
$f term s $.
$f wff P $.
$f wff Q $.

$a term 0 $.
$a term ( t + r ) $.

$a wff t = r $.
$a wff ( P -> Q ) $.

$a |- ( t = r -> ( t = s -> r = s ) ) $.
$a |- ( t + 0 ) = t $.
${
$( Define the modus ponens inference rule $)
$e |- P $.
$e |- ( P -> Q ) $.
$a |- Q $.
$}

$p |- t = t $=
$( Here is its proof: $)



$.