$( Modified version of demo0.mm from 1-Jan-04 $) $( PUBLIC DOMAIN DEDICATION This file is placed in the public domain per the Creative Commons Public Domain Dedication. http://creativecommons.org/licenses/publicdomain/ Norman Megill - email: nm at alum.mit.edu $) $c 0 + = -> ( ) term wff |- $. $v t r s P Q $. $fterm t $. $fterm r $. $fterm s $. $fwff P $. $fwff Q $. $aterm 0 $. $aterm ( t + r ) $. $awff t = r $. $awff ( P -> Q ) $. $a|- ( t = r -> ( t = s -> r = s ) ) $. $a|- ( t + 0 ) = t $. ${ $( Define the modus ponens inference rule $) $e|- P $. $e|- ( P -> Q ) $. $a|- Q $. $} $p|- t = t $= $( Here is its proof: $)