/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MMZONE_H #define _LINUX_MMZONE_H #ifndef __ASSEMBLY__ #ifndef __GENERATING_BOUNDS_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Free memory management - zoned buddy allocator. */ #ifndef CONFIG_ARCH_FORCE_MAX_ORDER #define MAX_PAGE_ORDER 10 #else #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER #endif #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER) #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1) /* * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed * costly to service. That is between allocation orders which should * coalesce naturally under reasonable reclaim pressure and those which * will not. */ #define PAGE_ALLOC_COSTLY_ORDER 3 enum migratetype { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RECLAIMABLE, MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, #ifdef CONFIG_CMA /* * MIGRATE_CMA migration type is designed to mimic the way * ZONE_MOVABLE works. Only movable pages can be allocated * from MIGRATE_CMA pageblocks and page allocator never * implicitly change migration type of MIGRATE_CMA pageblock. * * The way to use it is to change migratetype of a range of * pageblocks to MIGRATE_CMA which can be done by * __free_pageblock_cma() function. */ MIGRATE_CMA, #endif #ifdef CONFIG_MEMORY_ISOLATION MIGRATE_ISOLATE, /* can't allocate from here */ #endif MIGRATE_TYPES }; /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ extern const char * const migratetype_names[MIGRATE_TYPES]; #ifdef CONFIG_CMA # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) # define is_migrate_cma_folio(folio, pfn) (MIGRATE_CMA == \ get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK)) #else # define is_migrate_cma(migratetype) false # define is_migrate_cma_page(_page) false # define is_migrate_cma_folio(folio, pfn) false #endif static inline bool is_migrate_movable(int mt) { return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; } /* * Check whether a migratetype can be merged with another migratetype. * * It is only mergeable when it can fall back to other migratetypes for * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. */ static inline bool migratetype_is_mergeable(int mt) { return mt < MIGRATE_PCPTYPES; } #define for_each_migratetype_order(order, type) \ for (order = 0; order < NR_PAGE_ORDERS; order++) \ for (type = 0; type < MIGRATE_TYPES; type++) extern int page_group_by_mobility_disabled; #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) #define get_pageblock_migratetype(page) \ get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) #define folio_migratetype(folio) \ get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \ MIGRATETYPE_MASK) struct free_area { struct list_head free_list[MIGRATE_TYPES]; unsigned long nr_free; }; struct pglist_data; #ifdef CONFIG_NUMA enum numa_stat_item { NUMA_HIT, /* allocated in intended node */ NUMA_MISS, /* allocated in non intended node */ NUMA_FOREIGN, /* was intended here, hit elsewhere */ NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ NUMA_LOCAL, /* allocation from local node */ NUMA_OTHER, /* allocation from other node */ NR_VM_NUMA_EVENT_ITEMS }; #else #define NR_VM_NUMA_EVENT_ITEMS 0 #endif enum zone_stat_item { /* First 128 byte cacheline (assuming 64 bit words) */ NR_FREE_PAGES, NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, NR_ZONE_ACTIVE_ANON, NR_ZONE_INACTIVE_FILE, NR_ZONE_ACTIVE_FILE, NR_ZONE_UNEVICTABLE, NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ NR_MLOCK, /* mlock()ed pages found and moved off LRU */ /* Second 128 byte cacheline */ NR_BOUNCE, #if IS_ENABLED(CONFIG_ZSMALLOC) NR_ZSPAGES, /* allocated in zsmalloc */ #endif NR_FREE_CMA_PAGES, #ifdef CONFIG_UNACCEPTED_MEMORY NR_UNACCEPTED, #endif NR_VM_ZONE_STAT_ITEMS }; enum node_stat_item { NR_LRU_BASE, NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ NR_ACTIVE_ANON, /* " " " " " */ NR_INACTIVE_FILE, /* " " " " " */ NR_ACTIVE_FILE, /* " " " " " */ NR_UNEVICTABLE, /* " " " " " */ NR_SLAB_RECLAIMABLE_B, NR_SLAB_UNRECLAIMABLE_B, NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ WORKINGSET_NODES, WORKINGSET_REFAULT_BASE, WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, WORKINGSET_REFAULT_FILE, WORKINGSET_ACTIVATE_BASE, WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, WORKINGSET_ACTIVATE_FILE, WORKINGSET_RESTORE_BASE, WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, WORKINGSET_RESTORE_FILE, WORKINGSET_NODERECLAIM, NR_ANON_MAPPED, /* Mapped anonymous pages */ NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. only modified from process context */ NR_FILE_PAGES, NR_FILE_DIRTY, NR_WRITEBACK, NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ NR_SHMEM_THPS, NR_SHMEM_PMDMAPPED, NR_FILE_THPS, NR_FILE_PMDMAPPED, NR_ANON_THPS, NR_VMSCAN_WRITE, NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ NR_DIRTIED, /* page dirtyings since bootup */ NR_WRITTEN, /* page writings since bootup */ NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ NR_KERNEL_STACK_KB, /* measured in KiB */ #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) NR_KERNEL_SCS_KB, /* measured in KiB */ #endif NR_PAGETABLE, /* used for pagetables */ NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */ #ifdef CONFIG_IOMMU_SUPPORT NR_IOMMU_PAGES, /* # of pages allocated by IOMMU */ #endif #ifdef CONFIG_SWAP NR_SWAPCACHE, #endif #ifdef CONFIG_NUMA_BALANCING PGPROMOTE_SUCCESS, /* promote successfully */ PGPROMOTE_CANDIDATE, /* candidate pages to promote */ #endif /* PGDEMOTE_*: pages demoted */ PGDEMOTE_KSWAPD, PGDEMOTE_DIRECT, PGDEMOTE_KHUGEPAGED, NR_VM_NODE_STAT_ITEMS }; /* * Returns true if the item should be printed in THPs (/proc/vmstat * currently prints number of anon, file and shmem THPs. But the item * is charged in pages). */ static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) { if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) return false; return item == NR_ANON_THPS || item == NR_FILE_THPS || item == NR_SHMEM_THPS || item == NR_SHMEM_PMDMAPPED || item == NR_FILE_PMDMAPPED; } /* * Returns true if the value is measured in bytes (most vmstat values are * measured in pages). This defines the API part, the internal representation * might be different. */ static __always_inline bool vmstat_item_in_bytes(int idx) { /* * Global and per-node slab counters track slab pages. * It's expected that changes are multiples of PAGE_SIZE. * Internally values are stored in pages. * * Per-memcg and per-lruvec counters track memory, consumed * by individual slab objects. These counters are actually * byte-precise. */ return (idx == NR_SLAB_RECLAIMABLE_B || idx == NR_SLAB_UNRECLAIMABLE_B); } /* * We do arithmetic on the LRU lists in various places in the code, * so it is important to keep the active lists LRU_ACTIVE higher in * the array than the corresponding inactive lists, and to keep * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. * * This has to be kept in sync with the statistics in zone_stat_item * above and the descriptions in vmstat_text in mm/vmstat.c */ #define LRU_BASE 0 #define LRU_ACTIVE 1 #define LRU_FILE 2 enum lru_list { LRU_INACTIVE_ANON = LRU_BASE, LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, LRU_UNEVICTABLE, NR_LRU_LISTS }; enum vmscan_throttle_state { VMSCAN_THROTTLE_WRITEBACK, VMSCAN_THROTTLE_ISOLATED, VMSCAN_THROTTLE_NOPROGRESS, VMSCAN_THROTTLE_CONGESTED, NR_VMSCAN_THROTTLE, }; #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) static inline bool is_file_lru(enum lru_list lru) { return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); } static inline bool is_active_lru(enum lru_list lru) { return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); } #define WORKINGSET_ANON 0 #define WORKINGSET_FILE 1 #define ANON_AND_FILE 2 enum lruvec_flags { /* * An lruvec has many dirty pages backed by a congested BDI: * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. * It can be cleared by cgroup reclaim or kswapd. * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. * It can only be cleared by kswapd. * * Essentially, kswapd can unthrottle an lruvec throttled by cgroup * reclaim, but not vice versa. This only applies to the root cgroup. * The goal is to prevent cgroup reclaim on the root cgroup (e.g. * memory.reclaim) to unthrottle an unbalanced node (that was throttled * by kswapd). */ LRUVEC_CGROUP_CONGESTED, LRUVEC_NODE_CONGESTED, }; #endif /* !__GENERATING_BOUNDS_H */ /* * Evictable pages are divided into multiple generations. The youngest and the * oldest generation numbers, max_seq and min_seq, are monotonically increasing. * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the * corresponding generation. The gen counter in folio->flags stores gen+1 while * a page is on one of lrugen->folios[]. Otherwise it stores 0. * * A page is added to the youngest generation on faulting. The aging needs to * check the accessed bit at least twice before handing this page over to the * eviction. The first check takes care of the accessed bit set on the initial * fault; the second check makes sure this page hasn't been used since then. * This process, AKA second chance, requires a minimum of two generations, * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive * LRU, e.g., /proc/vmstat, these two generations are considered active; the * rest of generations, if they exist, are considered inactive. See * lru_gen_is_active(). * * PG_active is always cleared while a page is on one of lrugen->folios[] so * that the aging needs not to worry about it. And it's set again when a page * considered active is isolated for non-reclaiming purposes, e.g., migration. * See lru_gen_add_folio() and lru_gen_del_folio(). * * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the * number of categories of the active/inactive LRU when keeping track of * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits * in folio->flags. */ #define MIN_NR_GENS 2U #define MAX_NR_GENS 4U /* * Each generation is divided into multiple tiers. A page accessed N times * through file descriptors is in tier order_base_2(N). A page in the first tier * (N=0,1) is marked by PG_referenced unless it was faulted in through page * tables or read ahead. A page in any other tier (N>1) is marked by * PG_referenced and PG_workingset. This implies a minimum of two tiers is * supported without using additional bits in folio->flags. * * In contrast to moving across generations which requires the LRU lock, moving * across tiers only involves atomic operations on folio->flags and therefore * has a negligible cost in the buffered access path. In the eviction path, * comparisons of refaulted/(evicted+protected) from the first tier and the * rest infer whether pages accessed multiple times through file descriptors * are statistically hot and thus worth protecting. * * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the * number of categories of the active/inactive LRU when keeping track of * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in * folio->flags. */ #define MAX_NR_TIERS 4U #ifndef __GENERATING_BOUNDS_H struct lruvec; struct page_vma_mapped_walk; #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) #ifdef CONFIG_LRU_GEN enum { LRU_GEN_ANON, LRU_GEN_FILE, }; enum { LRU_GEN_CORE, LRU_GEN_MM_WALK, LRU_GEN_NONLEAF_YOUNG, NR_LRU_GEN_CAPS }; #define MIN_LRU_BATCH BITS_PER_LONG #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) /* whether to keep historical stats from evicted generations */ #ifdef CONFIG_LRU_GEN_STATS #define NR_HIST_GENS MAX_NR_GENS #else #define NR_HIST_GENS 1U #endif /* * The youngest generation number is stored in max_seq for both anon and file * types as they are aged on an equal footing. The oldest generation numbers are * stored in min_seq[] separately for anon and file types as clean file pages * can be evicted regardless of swap constraints. * * Normally anon and file min_seq are in sync. But if swapping is constrained, * e.g., out of swap space, file min_seq is allowed to advance and leave anon * min_seq behind. * * The number of pages in each generation is eventually consistent and therefore * can be transiently negative when reset_batch_size() is pending. */ struct lru_gen_folio { /* the aging increments the youngest generation number */ unsigned long max_seq; /* the eviction increments the oldest generation numbers */ unsigned long min_seq[ANON_AND_FILE]; /* the birth time of each generation in jiffies */ unsigned long timestamps[MAX_NR_GENS]; /* the multi-gen LRU lists, lazily sorted on eviction */ struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; /* the multi-gen LRU sizes, eventually consistent */ long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; /* the exponential moving average of refaulted */ unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; /* the exponential moving average of evicted+protected */ unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; /* the first tier doesn't need protection, hence the minus one */ unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1]; /* can be modified without holding the LRU lock */ atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; /* whether the multi-gen LRU is enabled */ bool enabled; /* the memcg generation this lru_gen_folio belongs to */ u8 gen; /* the list segment this lru_gen_folio belongs to */ u8 seg; /* per-node lru_gen_folio list for global reclaim */ struct hlist_nulls_node list; }; enum { MM_LEAF_TOTAL, /* total leaf entries */ MM_LEAF_OLD, /* old leaf entries */ MM_LEAF_YOUNG, /* young leaf entries */ MM_NONLEAF_TOTAL, /* total non-leaf entries */ MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ NR_MM_STATS }; /* double-buffering Bloom filters */ #define NR_BLOOM_FILTERS 2 struct lru_gen_mm_state { /* synced with max_seq after each iteration */ unsigned long seq; /* where the current iteration continues after */ struct list_head *head; /* where the last iteration ended before */ struct list_head *tail; /* Bloom filters flip after each iteration */ unsigned long *filters[NR_BLOOM_FILTERS]; /* the mm stats for debugging */ unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; }; struct lru_gen_mm_walk { /* the lruvec under reclaim */ struct lruvec *lruvec; /* max_seq from lru_gen_folio: can be out of date */ unsigned long seq; /* the next address within an mm to scan */ unsigned long next_addr; /* to batch promoted pages */ int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; /* to batch the mm stats */ int mm_stats[NR_MM_STATS]; /* total batched items */ int batched; bool can_swap; bool force_scan; }; /* * For each node, memcgs are divided into two generations: the old and the * young. For each generation, memcgs are randomly sharded into multiple bins * to improve scalability. For each bin, the hlist_nulls is virtually divided * into three segments: the head, the tail and the default. * * An onlining memcg is added to the tail of a random bin in the old generation. * The eviction starts at the head of a random bin in the old generation. The * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes * the old generation, is incremented when all its bins become empty. * * There are four operations: * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its * current generation (old or young) and updates its "seg" to "head"; * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its * current generation (old or young) and updates its "seg" to "tail"; * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old * generation, updates its "gen" to "old" and resets its "seg" to "default"; * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the * young generation, updates its "gen" to "young" and resets its "seg" to * "default". * * The events that trigger the above operations are: * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; * 2. The first attempt to reclaim a memcg below low, which triggers * MEMCG_LRU_TAIL; * 3. The first attempt to reclaim a memcg offlined or below reclaimable size * threshold, which triggers MEMCG_LRU_TAIL; * 4. The second attempt to reclaim a memcg offlined or below reclaimable size * threshold, which triggers MEMCG_LRU_YOUNG; * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG; * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD. * * Notes: * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing * of their max_seq counters ensures the eventual fairness to all eligible * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). * 2. There are only two valid generations: old (seq) and young (seq+1). * MEMCG_NR_GENS is set to three so that when reading the generation counter * locklessly, a stale value (seq-1) does not wraparound to young. */ #define MEMCG_NR_GENS 3 #define MEMCG_NR_BINS 8 struct lru_gen_memcg { /* the per-node memcg generation counter */ unsigned long seq; /* each memcg has one lru_gen_folio per node */ unsigned long nr_memcgs[MEMCG_NR_GENS]; /* per-node lru_gen_folio list for global reclaim */ struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; /* protects the above */ spinlock_t lock; }; void lru_gen_init_pgdat(struct pglist_data *pgdat); void lru_gen_init_lruvec(struct lruvec *lruvec); void lru_gen_look_around(struct page_vma_mapped_walk *pvmw); void lru_gen_init_memcg(struct mem_cgroup *memcg); void lru_gen_exit_memcg(struct mem_cgroup *memcg); void lru_gen_online_memcg(struct mem_cgroup *memcg); void lru_gen_offline_memcg(struct mem_cgroup *memcg); void lru_gen_release_memcg(struct mem_cgroup *memcg); void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); #else /* !CONFIG_LRU_GEN */ static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) { } static inline void lru_gen_init_lruvec(struct lruvec *lruvec) { } static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) { } static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) { } static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) { } static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) { } static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) { } static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) { } static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) { } #endif /* CONFIG_LRU_GEN */ struct lruvec { struct list_head lists[NR_LRU_LISTS]; /* per lruvec lru_lock for memcg */ spinlock_t lru_lock; /* * These track the cost of reclaiming one LRU - file or anon - * over the other. As the observed cost of reclaiming one LRU * increases, the reclaim scan balance tips toward the other. */ unsigned long anon_cost; unsigned long file_cost; /* Non-resident age, driven by LRU movement */ atomic_long_t nonresident_age; /* Refaults at the time of last reclaim cycle */ unsigned long refaults[ANON_AND_FILE]; /* Various lruvec state flags (enum lruvec_flags) */ unsigned long flags; #ifdef CONFIG_LRU_GEN /* evictable pages divided into generations */ struct lru_gen_folio lrugen; #ifdef CONFIG_LRU_GEN_WALKS_MMU /* to concurrently iterate lru_gen_mm_list */ struct lru_gen_mm_state mm_state; #endif #endif /* CONFIG_LRU_GEN */ #ifdef CONFIG_MEMCG struct pglist_data *pgdat; #endif struct zswap_lruvec_state zswap_lruvec_state; }; /* Isolate for asynchronous migration */ #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) /* Isolate unevictable pages */ #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) /* LRU Isolation modes. */ typedef unsigned __bitwise isolate_mode_t; enum zone_watermarks { WMARK_MIN, WMARK_LOW, WMARK_HIGH, WMARK_PROMO, NR_WMARK }; /* * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE. */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define NR_PCP_THP 2 #else #define NR_PCP_THP 0 #endif #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) /* * Flags used in pcp->flags field. * * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the * previous page freeing. To avoid to drain PCP for an accident * high-order page freeing. * * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before * draining PCP for consecutive high-order pages freeing without * allocation if data cache slice of CPU is large enough. To reduce * zone lock contention and keep cache-hot pages reusing. */ #define PCPF_PREV_FREE_HIGH_ORDER BIT(0) #define PCPF_FREE_HIGH_BATCH BIT(1) struct per_cpu_pages { spinlock_t lock; /* Protects lists field */ int count; /* number of pages in the list */ int high; /* high watermark, emptying needed */ int high_min; /* min high watermark */ int high_max; /* max high watermark */ int batch; /* chunk size for buddy add/remove */ u8 flags; /* protected by pcp->lock */ u8 alloc_factor; /* batch scaling factor during allocate */ #ifdef CONFIG_NUMA u8 expire; /* When 0, remote pagesets are drained */ #endif short free_count; /* consecutive free count */ /* Lists of pages, one per migrate type stored on the pcp-lists */ struct list_head lists[NR_PCP_LISTS]; } ____cacheline_aligned_in_smp; struct per_cpu_zonestat { #ifdef CONFIG_SMP s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; s8 stat_threshold; #endif #ifdef CONFIG_NUMA /* * Low priority inaccurate counters that are only folded * on demand. Use a large type to avoid the overhead of * folding during refresh_cpu_vm_stats. */ unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; #endif }; struct per_cpu_nodestat { s8 stat_threshold; s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; }; #endif /* !__GENERATING_BOUNDS.H */ enum zone_type { /* * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able * to DMA to all of the addressable memory (ZONE_NORMAL). * On architectures where this area covers the whole 32 bit address * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller * DMA addressing constraints. This distinction is important as a 32bit * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit * platforms may need both zones as they support peripherals with * different DMA addressing limitations. */ #ifdef CONFIG_ZONE_DMA ZONE_DMA, #endif #ifdef CONFIG_ZONE_DMA32 ZONE_DMA32, #endif /* * Normal addressable memory is in ZONE_NORMAL. DMA operations can be * performed on pages in ZONE_NORMAL if the DMA devices support * transfers to all addressable memory. */ ZONE_NORMAL, #ifdef CONFIG_HIGHMEM /* * A memory area that is only addressable by the kernel through * mapping portions into its own address space. This is for example * used by i386 to allow the kernel to address the memory beyond * 900MB. The kernel will set up special mappings (page * table entries on i386) for each page that the kernel needs to * access. */ ZONE_HIGHMEM, #endif /* * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains * movable pages with few exceptional cases described below. Main use * cases for ZONE_MOVABLE are to make memory offlining/unplug more * likely to succeed, and to locally limit unmovable allocations - e.g., * to increase the number of THP/huge pages. Notable special cases are: * * 1. Pinned pages: (long-term) pinning of movable pages might * essentially turn such pages unmovable. Therefore, we do not allow * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and * faulted, they come from the right zone right away. However, it is * still possible that address space already has pages in * ZONE_MOVABLE at the time when pages are pinned (i.e. user has * touches that memory before pinning). In such case we migrate them * to a different zone. When migration fails - pinning fails. * 2. memblock allocations: kernelcore/movablecore setups might create * situations where ZONE_MOVABLE contains unmovable allocations * after boot. Memory offlining and allocations fail early. * 3. Memory holes: kernelcore/movablecore setups might create very rare * situations where ZONE_MOVABLE contains memory holes after boot, * for example, if we have sections that are only partially * populated. Memory offlining and allocations fail early. * 4. PG_hwpoison pages: while poisoned pages can be skipped during * memory offlining, such pages cannot be allocated. * 5. Unmovable PG_offline pages: in paravirtualized environments, * hotplugged memory blocks might only partially be managed by the * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The * parts not manged by the buddy are unmovable PG_offline pages. In * some cases (virtio-mem), such pages can be skipped during * memory offlining, however, cannot be moved/allocated. These * techniques might use alloc_contig_range() to hide previously * exposed pages from the buddy again (e.g., to implement some sort * of memory unplug in virtio-mem). * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create * situations where ZERO_PAGE(0) which is allocated differently * on different platforms may end up in a movable zone. ZERO_PAGE(0) * cannot be migrated. * 7. Memory-hotplug: when using memmap_on_memory and onlining the * memory to the MOVABLE zone, the vmemmap pages are also placed in * such zone. Such pages cannot be really moved around as they are * self-stored in the range, but they are treated as movable when * the range they describe is about to be offlined. * * In general, no unmovable allocations that degrade memory offlining * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) * have to expect that migrating pages in ZONE_MOVABLE can fail (even * if has_unmovable_pages() states that there are no unmovable pages, * there can be false negatives). */ ZONE_MOVABLE, #ifdef CONFIG_ZONE_DEVICE ZONE_DEVICE, #endif __MAX_NR_ZONES }; #ifndef __GENERATING_BOUNDS_H #define ASYNC_AND_SYNC 2 struct zone { /* Read-mostly fields */ /* zone watermarks, access with *_wmark_pages(zone) macros */ unsigned long _watermark[NR_WMARK]; unsigned long watermark_boost; unsigned long nr_reserved_highatomic; /* * We don't know if the memory that we're going to allocate will be * freeable or/and it will be released eventually, so to avoid totally * wasting several GB of ram we must reserve some of the lower zone * memory (otherwise we risk to run OOM on the lower zones despite * there being tons of freeable ram on the higher zones). This array is * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl * changes. */ long lowmem_reserve[MAX_NR_ZONES]; #ifdef CONFIG_NUMA int node; #endif struct pglist_data *zone_pgdat; struct per_cpu_pages __percpu *per_cpu_pageset; struct per_cpu_zonestat __percpu *per_cpu_zonestats; /* * the high and batch values are copied to individual pagesets for * faster access */ int pageset_high_min; int pageset_high_max; int pageset_batch; #ifndef CONFIG_SPARSEMEM /* * Flags for a pageblock_nr_pages block. See pageblock-flags.h. * In SPARSEMEM, this map is stored in struct mem_section */ unsigned long *pageblock_flags; #endif /* CONFIG_SPARSEMEM */ /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ unsigned long zone_start_pfn; /* * spanned_pages is the total pages spanned by the zone, including * holes, which is calculated as: * spanned_pages = zone_end_pfn - zone_start_pfn; * * present_pages is physical pages existing within the zone, which * is calculated as: * present_pages = spanned_pages - absent_pages(pages in holes); * * present_early_pages is present pages existing within the zone * located on memory available since early boot, excluding hotplugged * memory. * * managed_pages is present pages managed by the buddy system, which * is calculated as (reserved_pages includes pages allocated by the * bootmem allocator): * managed_pages = present_pages - reserved_pages; * * cma pages is present pages that are assigned for CMA use * (MIGRATE_CMA). * * So present_pages may be used by memory hotplug or memory power * management logic to figure out unmanaged pages by checking * (present_pages - managed_pages). And managed_pages should be used * by page allocator and vm scanner to calculate all kinds of watermarks * and thresholds. * * Locking rules: * * zone_start_pfn and spanned_pages are protected by span_seqlock. * It is a seqlock because it has to be read outside of zone->lock, * and it is done in the main allocator path. But, it is written * quite infrequently. * * The span_seq lock is declared along with zone->lock because it is * frequently read in proximity to zone->lock. It's good to * give them a chance of being in the same cacheline. * * Write access to present_pages at runtime should be protected by * mem_hotplug_begin/done(). Any reader who can't tolerant drift of * present_pages should use get_online_mems() to get a stable value. */ atomic_long_t managed_pages; unsigned long spanned_pages; unsigned long present_pages; #if defined(CONFIG_MEMORY_HOTPLUG) unsigned long present_early_pages; #endif #ifdef CONFIG_CMA unsigned long cma_pages; #endif const char *name; #ifdef CONFIG_MEMORY_ISOLATION /* * Number of isolated pageblock. It is used to solve incorrect * freepage counting problem due to racy retrieving migratetype * of pageblock. Protected by zone->lock. */ unsigned long nr_isolate_pageblock; #endif #ifdef CONFIG_MEMORY_HOTPLUG /* see spanned/present_pages for more description */ seqlock_t span_seqlock; #endif int initialized; /* Write-intensive fields used from the page allocator */ CACHELINE_PADDING(_pad1_); /* free areas of different sizes */ struct free_area free_area[NR_PAGE_ORDERS]; #ifdef CONFIG_UNACCEPTED_MEMORY /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */ struct list_head unaccepted_pages; #endif /* zone flags, see below */ unsigned long flags; /* Primarily protects free_area */ spinlock_t lock; /* Write-intensive fields used by compaction and vmstats. */ CACHELINE_PADDING(_pad2_); /* * When free pages are below this point, additional steps are taken * when reading the number of free pages to avoid per-cpu counter * drift allowing watermarks to be breached */ unsigned long percpu_drift_mark; #if defined CONFIG_COMPACTION || defined CONFIG_CMA /* pfn where compaction free scanner should start */ unsigned long compact_cached_free_pfn; /* pfn where compaction migration scanner should start */ unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; unsigned long compact_init_migrate_pfn; unsigned long compact_init_free_pfn; #endif #ifdef CONFIG_COMPACTION /* * On compaction failure, 1<managed_pages); } static inline unsigned long zone_cma_pages(struct zone *zone) { #ifdef CONFIG_CMA return zone->cma_pages; #else return 0; #endif } static inline unsigned long zone_end_pfn(const struct zone *zone) { return zone->zone_start_pfn + zone->spanned_pages; } static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) { return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); } static inline bool zone_is_initialized(struct zone *zone) { return zone->initialized; } static inline bool zone_is_empty(struct zone *zone) { return zone->spanned_pages == 0; } #ifndef BUILD_VDSO32_64 /* * The zone field is never updated after free_area_init_core() * sets it, so none of the operations on it need to be atomic. */ /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) /* * Define the bit shifts to access each section. For non-existent * sections we define the shift as 0; that plus a 0 mask ensures * the compiler will optimise away reference to them. */ #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ #ifdef NODE_NOT_IN_PAGE_FLAGS #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ SECTIONS_PGOFF : ZONES_PGOFF) #else #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ NODES_PGOFF : ZONES_PGOFF) #endif #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) #define NODES_MASK ((1UL << NODES_WIDTH) - 1) #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) static inline enum zone_type page_zonenum(const struct page *page) { ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; } static inline enum zone_type folio_zonenum(const struct folio *folio) { return page_zonenum(&folio->page); } #ifdef CONFIG_ZONE_DEVICE static inline bool is_zone_device_page(const struct page *page) { return page_zonenum(page) == ZONE_DEVICE; } /* * Consecutive zone device pages should not be merged into the same sgl * or bvec segment with other types of pages or if they belong to different * pgmaps. Otherwise getting the pgmap of a given segment is not possible * without scanning the entire segment. This helper returns true either if * both pages are not zone device pages or both pages are zone device pages * with the same pgmap. */ static inline bool zone_device_pages_have_same_pgmap(const struct page *a, const struct page *b) { if (is_zone_device_page(a) != is_zone_device_page(b)) return false; if (!is_zone_device_page(a)) return true; return a->pgmap == b->pgmap; } extern void memmap_init_zone_device(struct zone *, unsigned long, unsigned long, struct dev_pagemap *); #else static inline bool is_zone_device_page(const struct page *page) { return false; } static inline bool zone_device_pages_have_same_pgmap(const struct page *a, const struct page *b) { return true; } #endif static inline bool folio_is_zone_device(const struct folio *folio) { return is_zone_device_page(&folio->page); } static inline bool is_zone_movable_page(const struct page *page) { return page_zonenum(page) == ZONE_MOVABLE; } static inline bool folio_is_zone_movable(const struct folio *folio) { return folio_zonenum(folio) == ZONE_MOVABLE; } #endif /* * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty * intersection with the given zone */ static inline bool zone_intersects(struct zone *zone, unsigned long start_pfn, unsigned long nr_pages) { if (zone_is_empty(zone)) return false; if (start_pfn >= zone_end_pfn(zone) || start_pfn + nr_pages <= zone->zone_start_pfn) return false; return true; } /* * The "priority" of VM scanning is how much of the queues we will scan in one * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the * queues ("queue_length >> 12") during an aging round. */ #define DEF_PRIORITY 12 /* Maximum number of zones on a zonelist */ #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) enum { ZONELIST_FALLBACK, /* zonelist with fallback */ #ifdef CONFIG_NUMA /* * The NUMA zonelists are doubled because we need zonelists that * restrict the allocations to a single node for __GFP_THISNODE. */ ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ #endif MAX_ZONELISTS }; /* * This struct contains information about a zone in a zonelist. It is stored * here to avoid dereferences into large structures and lookups of tables */ struct zoneref { struct zone *zone; /* Pointer to actual zone */ int zone_idx; /* zone_idx(zoneref->zone) */ }; /* * One allocation request operates on a zonelist. A zonelist * is a list of zones, the first one is the 'goal' of the * allocation, the other zones are fallback zones, in decreasing * priority. * * To speed the reading of the zonelist, the zonerefs contain the zone index * of the entry being read. Helper functions to access information given * a struct zoneref are * * zonelist_zone() - Return the struct zone * for an entry in _zonerefs * zonelist_zone_idx() - Return the index of the zone for an entry * zonelist_node_idx() - Return the index of the node for an entry */ struct zonelist { struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; }; /* * The array of struct pages for flatmem. * It must be declared for SPARSEMEM as well because there are configurations * that rely on that. */ extern struct page *mem_map; #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct deferred_split { spinlock_t split_queue_lock; struct list_head split_queue; unsigned long split_queue_len; }; #endif #ifdef CONFIG_MEMORY_FAILURE /* * Per NUMA node memory failure handling statistics. */ struct memory_failure_stats { /* * Number of raw pages poisoned. * Cases not accounted: memory outside kernel control, offline page, * arch-specific memory_failure (SGX), hwpoison_filter() filtered * error events, and unpoison actions from hwpoison_unpoison. */ unsigned long total; /* * Recovery results of poisoned raw pages handled by memory_failure, * in sync with mf_result. * total = ignored + failed + delayed + recovered. * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. */ unsigned long ignored; unsigned long failed; unsigned long delayed; unsigned long recovered; }; #endif /* * On NUMA machines, each NUMA node would have a pg_data_t to describe * it's memory layout. On UMA machines there is a single pglist_data which * describes the whole memory. * * Memory statistics and page replacement data structures are maintained on a * per-zone basis. */ typedef struct pglist_data { /* * node_zones contains just the zones for THIS node. Not all of the * zones may be populated, but it is the full list. It is referenced by * this node's node_zonelists as well as other node's node_zonelists. */ struct zone node_zones[MAX_NR_ZONES]; /* * node_zonelists contains references to all zones in all nodes. * Generally the first zones will be references to this node's * node_zones. */ struct zonelist node_zonelists[MAX_ZONELISTS]; int nr_zones; /* number of populated zones in this node */ #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ struct page *node_mem_map; #ifdef CONFIG_PAGE_EXTENSION struct page_ext *node_page_ext; #endif #endif #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) /* * Must be held any time you expect node_start_pfn, * node_present_pages, node_spanned_pages or nr_zones to stay constant. * Also synchronizes pgdat->first_deferred_pfn during deferred page * init. * * pgdat_resize_lock() and pgdat_resize_unlock() are provided to * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. * * Nests above zone->lock and zone->span_seqlock */ spinlock_t node_size_lock; #endif unsigned long node_start_pfn; unsigned long node_present_pages; /* total number of physical pages */ unsigned long node_spanned_pages; /* total size of physical page range, including holes */ int node_id; wait_queue_head_t kswapd_wait; wait_queue_head_t pfmemalloc_wait; /* workqueues for throttling reclaim for different reasons. */ wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ unsigned long nr_reclaim_start; /* nr pages written while throttled * when throttling started. */ #ifdef CONFIG_MEMORY_HOTPLUG struct mutex kswapd_lock; #endif struct task_struct *kswapd; /* Protected by kswapd_lock */ int kswapd_order; enum zone_type kswapd_highest_zoneidx; int kswapd_failures; /* Number of 'reclaimed == 0' runs */ #ifdef CONFIG_COMPACTION int kcompactd_max_order; enum zone_type kcompactd_highest_zoneidx; wait_queue_head_t kcompactd_wait; struct task_struct *kcompactd; bool proactive_compact_trigger; #endif /* * This is a per-node reserve of pages that are not available * to userspace allocations. */ unsigned long totalreserve_pages; #ifdef CONFIG_NUMA /* * node reclaim becomes active if more unmapped pages exist. */ unsigned long min_unmapped_pages; unsigned long min_slab_pages; #endif /* CONFIG_NUMA */ /* Write-intensive fields used by page reclaim */ CACHELINE_PADDING(_pad1_); #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT /* * If memory initialisation on large machines is deferred then this * is the first PFN that needs to be initialised. */ unsigned long first_deferred_pfn; #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct deferred_split deferred_split_queue; #endif #ifdef CONFIG_NUMA_BALANCING /* start time in ms of current promote rate limit period */ unsigned int nbp_rl_start; /* number of promote candidate pages at start time of current rate limit period */ unsigned long nbp_rl_nr_cand; /* promote threshold in ms */ unsigned int nbp_threshold; /* start time in ms of current promote threshold adjustment period */ unsigned int nbp_th_start; /* * number of promote candidate pages at start time of current promote * threshold adjustment period */ unsigned long nbp_th_nr_cand; #endif /* Fields commonly accessed by the page reclaim scanner */ /* * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. * * Use mem_cgroup_lruvec() to look up lruvecs. */ struct lruvec __lruvec; unsigned long flags; #ifdef CONFIG_LRU_GEN /* kswap mm walk data */ struct lru_gen_mm_walk mm_walk; /* lru_gen_folio list */ struct lru_gen_memcg memcg_lru; #endif CACHELINE_PADDING(_pad2_); /* Per-node vmstats */ struct per_cpu_nodestat __percpu *per_cpu_nodestats; atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; #ifdef CONFIG_NUMA struct memory_tier __rcu *memtier; #endif #ifdef CONFIG_MEMORY_FAILURE struct memory_failure_stats mf_stats; #endif } pg_data_t; #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) { return pgdat->node_start_pfn + pgdat->node_spanned_pages; } #include void build_all_zonelists(pg_data_t *pgdat); void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, enum zone_type highest_zoneidx); bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, int highest_zoneidx, unsigned int alloc_flags, long free_pages); bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, int highest_zoneidx, unsigned int alloc_flags); bool zone_watermark_ok_safe(struct zone *z, unsigned int order, unsigned long mark, int highest_zoneidx); /* * Memory initialization context, use to differentiate memory added by * the platform statically or via memory hotplug interface. */ enum meminit_context { MEMINIT_EARLY, MEMINIT_HOTPLUG, }; extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, unsigned long size); extern void lruvec_init(struct lruvec *lruvec); static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) { #ifdef CONFIG_MEMCG return lruvec->pgdat; #else return container_of(lruvec, struct pglist_data, __lruvec); #endif } #ifdef CONFIG_HAVE_MEMORYLESS_NODES int local_memory_node(int node_id); #else static inline int local_memory_node(int node_id) { return node_id; }; #endif /* * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. */ #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) #ifdef CONFIG_ZONE_DEVICE static inline bool zone_is_zone_device(struct zone *zone) { return zone_idx(zone) == ZONE_DEVICE; } #else static inline bool zone_is_zone_device(struct zone *zone) { return false; } #endif /* * Returns true if a zone has pages managed by the buddy allocator. * All the reclaim decisions have to use this function rather than * populated_zone(). If the whole zone is reserved then we can easily * end up with populated_zone() && !managed_zone(). */ static inline bool managed_zone(struct zone *zone) { return zone_managed_pages(zone); } /* Returns true if a zone has memory */ static inline bool populated_zone(struct zone *zone) { return zone->present_pages; } #ifdef CONFIG_NUMA static inline int zone_to_nid(struct zone *zone) { return zone->node; } static inline void zone_set_nid(struct zone *zone, int nid) { zone->node = nid; } #else static inline int zone_to_nid(struct zone *zone) { return 0; } static inline void zone_set_nid(struct zone *zone, int nid) {} #endif extern int movable_zone; static inline int is_highmem_idx(enum zone_type idx) { #ifdef CONFIG_HIGHMEM return (idx == ZONE_HIGHMEM || (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); #else return 0; #endif } /** * is_highmem - helper function to quickly check if a struct zone is a * highmem zone or not. This is an attempt to keep references * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. * @zone: pointer to struct zone variable * Return: 1 for a highmem zone, 0 otherwise */ static inline int is_highmem(struct zone *zone) { return is_highmem_idx(zone_idx(zone)); } #ifdef CONFIG_ZONE_DMA bool has_managed_dma(void); #else static inline bool has_managed_dma(void) { return false; } #endif #ifndef CONFIG_NUMA extern struct pglist_data contig_page_data; static inline struct pglist_data *NODE_DATA(int nid) { return &contig_page_data; } #else /* CONFIG_NUMA */ #include #endif /* !CONFIG_NUMA */ extern struct pglist_data *first_online_pgdat(void); extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); extern struct zone *next_zone(struct zone *zone); /** * for_each_online_pgdat - helper macro to iterate over all online nodes * @pgdat: pointer to a pg_data_t variable */ #define for_each_online_pgdat(pgdat) \ for (pgdat = first_online_pgdat(); \ pgdat; \ pgdat = next_online_pgdat(pgdat)) /** * for_each_zone - helper macro to iterate over all memory zones * @zone: pointer to struct zone variable * * The user only needs to declare the zone variable, for_each_zone * fills it in. */ #define for_each_zone(zone) \ for (zone = (first_online_pgdat())->node_zones; \ zone; \ zone = next_zone(zone)) #define for_each_populated_zone(zone) \ for (zone = (first_online_pgdat())->node_zones; \ zone; \ zone = next_zone(zone)) \ if (!populated_zone(zone)) \ ; /* do nothing */ \ else static inline struct zone *zonelist_zone(struct zoneref *zoneref) { return zoneref->zone; } static inline int zonelist_zone_idx(struct zoneref *zoneref) { return zoneref->zone_idx; } static inline int zonelist_node_idx(struct zoneref *zoneref) { return zone_to_nid(zoneref->zone); } struct zoneref *__next_zones_zonelist(struct zoneref *z, enum zone_type highest_zoneidx, nodemask_t *nodes); /** * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point * @z: The cursor used as a starting point for the search * @highest_zoneidx: The zone index of the highest zone to return * @nodes: An optional nodemask to filter the zonelist with * * This function returns the next zone at or below a given zone index that is * within the allowed nodemask using a cursor as the starting point for the * search. The zoneref returned is a cursor that represents the current zone * being examined. It should be advanced by one before calling * next_zones_zonelist again. * * Return: the next zone at or below highest_zoneidx within the allowed * nodemask using a cursor within a zonelist as a starting point */ static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, enum zone_type highest_zoneidx, nodemask_t *nodes) { if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) return z; return __next_zones_zonelist(z, highest_zoneidx, nodes); } /** * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist * @zonelist: The zonelist to search for a suitable zone * @highest_zoneidx: The zone index of the highest zone to return * @nodes: An optional nodemask to filter the zonelist with * * This function returns the first zone at or below a given zone index that is * within the allowed nodemask. The zoneref returned is a cursor that can be * used to iterate the zonelist with next_zones_zonelist by advancing it by * one before calling. * * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is * never NULL). This may happen either genuinely, or due to concurrent nodemask * update due to cpuset modification. * * Return: Zoneref pointer for the first suitable zone found */ static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, enum zone_type highest_zoneidx, nodemask_t *nodes) { return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes); } /** * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask * @zone: The current zone in the iterator * @z: The current pointer within zonelist->_zonerefs being iterated * @zlist: The zonelist being iterated * @highidx: The zone index of the highest zone to return * @nodemask: Nodemask allowed by the allocator * * This iterator iterates though all zones at or below a given zone index and * within a given nodemask */ #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ zone; \ z = next_zones_zonelist(++z, highidx, nodemask), \ zone = zonelist_zone(z)) #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ for (zone = z->zone; \ zone; \ z = next_zones_zonelist(++z, highidx, nodemask), \ zone = zonelist_zone(z)) /** * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index * @zone: The current zone in the iterator * @z: The current pointer within zonelist->zones being iterated * @zlist: The zonelist being iterated * @highidx: The zone index of the highest zone to return * * This iterator iterates though all zones at or below a given zone index. */ #define for_each_zone_zonelist(zone, z, zlist, highidx) \ for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) /* Whether the 'nodes' are all movable nodes */ static inline bool movable_only_nodes(nodemask_t *nodes) { struct zonelist *zonelist; struct zoneref *z; int nid; if (nodes_empty(*nodes)) return false; /* * We can chose arbitrary node from the nodemask to get a * zonelist as they are interlinked. We just need to find * at least one zone that can satisfy kernel allocations. */ nid = first_node(*nodes); zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); return (!z->zone) ? true : false; } #ifdef CONFIG_SPARSEMEM #include #endif #ifdef CONFIG_FLATMEM #define pfn_to_nid(pfn) (0) #endif #ifdef CONFIG_SPARSEMEM /* * PA_SECTION_SHIFT physical address to/from section number * PFN_SECTION_SHIFT pfn to/from section number */ #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) #define SECTION_BLOCKFLAGS_BITS \ ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE #endif static inline unsigned long pfn_to_section_nr(unsigned long pfn) { return pfn >> PFN_SECTION_SHIFT; } static inline unsigned long section_nr_to_pfn(unsigned long sec) { return sec << PFN_SECTION_SHIFT; } #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) #define SUBSECTION_SHIFT 21 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) #if SUBSECTION_SHIFT > SECTION_SIZE_BITS #error Subsection size exceeds section size #else #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) #endif #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) struct mem_section_usage { struct rcu_head rcu; #ifdef CONFIG_SPARSEMEM_VMEMMAP DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); #endif /* See declaration of similar field in struct zone */ unsigned long pageblock_flags[0]; }; void subsection_map_init(unsigned long pfn, unsigned long nr_pages); struct page; struct page_ext; struct mem_section { /* * This is, logically, a pointer to an array of struct * pages. However, it is stored with some other magic. * (see sparse.c::sparse_init_one_section()) * * Additionally during early boot we encode node id of * the location of the section here to guide allocation. * (see sparse.c::memory_present()) * * Making it a UL at least makes someone do a cast * before using it wrong. */ unsigned long section_mem_map; struct mem_section_usage *usage; #ifdef CONFIG_PAGE_EXTENSION /* * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use * section. (see page_ext.h about this.) */ struct page_ext *page_ext; unsigned long pad; #endif /* * WARNING: mem_section must be a power-of-2 in size for the * calculation and use of SECTION_ROOT_MASK to make sense. */ }; #ifdef CONFIG_SPARSEMEM_EXTREME #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) #else #define SECTIONS_PER_ROOT 1 #endif #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) #ifdef CONFIG_SPARSEMEM_EXTREME extern struct mem_section **mem_section; #else extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; #endif static inline unsigned long *section_to_usemap(struct mem_section *ms) { return ms->usage->pageblock_flags; } static inline struct mem_section *__nr_to_section(unsigned long nr) { unsigned long root = SECTION_NR_TO_ROOT(nr); if (unlikely(root >= NR_SECTION_ROOTS)) return NULL; #ifdef CONFIG_SPARSEMEM_EXTREME if (!mem_section || !mem_section[root]) return NULL; #endif return &mem_section[root][nr & SECTION_ROOT_MASK]; } extern size_t mem_section_usage_size(void); /* * We use the lower bits of the mem_map pointer to store * a little bit of information. The pointer is calculated * as mem_map - section_nr_to_pfn(pnum). The result is * aligned to the minimum alignment of the two values: * 1. All mem_map arrays are page-aligned. * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT * lowest bits. PFN_SECTION_SHIFT is arch-specific * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the * worst combination is powerpc with 256k pages, * which results in PFN_SECTION_SHIFT equal 6. * To sum it up, at least 6 bits are available on all architectures. * However, we can exceed 6 bits on some other architectures except * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available * with the worst case of 64K pages on arm64) if we make sure the * exceeded bit is not applicable to powerpc. */ enum { SECTION_MARKED_PRESENT_BIT, SECTION_HAS_MEM_MAP_BIT, SECTION_IS_ONLINE_BIT, SECTION_IS_EARLY_BIT, #ifdef CONFIG_ZONE_DEVICE SECTION_TAINT_ZONE_DEVICE_BIT, #endif SECTION_MAP_LAST_BIT, }; #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) #ifdef CONFIG_ZONE_DEVICE #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) #endif #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT static inline struct page *__section_mem_map_addr(struct mem_section *section) { unsigned long map = section->section_mem_map; map &= SECTION_MAP_MASK; return (struct page *)map; } static inline int present_section(struct mem_section *section) { return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); } static inline int present_section_nr(unsigned long nr) { return present_section(__nr_to_section(nr)); } static inline int valid_section(struct mem_section *section) { return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); } static inline int early_section(struct mem_section *section) { return (section && (section->section_mem_map & SECTION_IS_EARLY)); } static inline int valid_section_nr(unsigned long nr) { return valid_section(__nr_to_section(nr)); } static inline int online_section(struct mem_section *section) { return (section && (section->section_mem_map & SECTION_IS_ONLINE)); } #ifdef CONFIG_ZONE_DEVICE static inline int online_device_section(struct mem_section *section) { unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; return section && ((section->section_mem_map & flags) == flags); } #else static inline int online_device_section(struct mem_section *section) { return 0; } #endif static inline int online_section_nr(unsigned long nr) { return online_section(__nr_to_section(nr)); } #ifdef CONFIG_MEMORY_HOTPLUG void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); #endif static inline struct mem_section *__pfn_to_section(unsigned long pfn) { return __nr_to_section(pfn_to_section_nr(pfn)); } extern unsigned long __highest_present_section_nr; static inline int subsection_map_index(unsigned long pfn) { return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; } #ifdef CONFIG_SPARSEMEM_VMEMMAP static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) { int idx = subsection_map_index(pfn); struct mem_section_usage *usage = READ_ONCE(ms->usage); return usage ? test_bit(idx, usage->subsection_map) : 0; } #else static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) { return 1; } #endif #ifndef CONFIG_HAVE_ARCH_PFN_VALID /** * pfn_valid - check if there is a valid memory map entry for a PFN * @pfn: the page frame number to check * * Check if there is a valid memory map entry aka struct page for the @pfn. * Note, that availability of the memory map entry does not imply that * there is actual usable memory at that @pfn. The struct page may * represent a hole or an unusable page frame. * * Return: 1 for PFNs that have memory map entries and 0 otherwise */ static inline int pfn_valid(unsigned long pfn) { struct mem_section *ms; int ret; /* * Ensure the upper PAGE_SHIFT bits are clear in the * pfn. Else it might lead to false positives when * some of the upper bits are set, but the lower bits * match a valid pfn. */ if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) return 0; if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) return 0; ms = __pfn_to_section(pfn); rcu_read_lock_sched(); if (!valid_section(ms)) { rcu_read_unlock_sched(); return 0; } /* * Traditionally early sections always returned pfn_valid() for * the entire section-sized span. */ ret = early_section(ms) || pfn_section_valid(ms, pfn); rcu_read_unlock_sched(); return ret; } #endif static inline int pfn_in_present_section(unsigned long pfn) { if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) return 0; return present_section(__pfn_to_section(pfn)); } static inline unsigned long next_present_section_nr(unsigned long section_nr) { while (++section_nr <= __highest_present_section_nr) { if (present_section_nr(section_nr)) return section_nr; } return -1; } /* * These are _only_ used during initialisation, therefore they * can use __initdata ... They could have names to indicate * this restriction. */ #ifdef CONFIG_NUMA #define pfn_to_nid(pfn) \ ({ \ unsigned long __pfn_to_nid_pfn = (pfn); \ page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ }) #else #define pfn_to_nid(pfn) (0) #endif void sparse_init(void); #else #define sparse_init() do {} while (0) #define sparse_index_init(_sec, _nid) do {} while (0) #define pfn_in_present_section pfn_valid #define subsection_map_init(_pfn, _nr_pages) do {} while (0) #endif /* CONFIG_SPARSEMEM */ #endif /* !__GENERATING_BOUNDS.H */ #endif /* !__ASSEMBLY__ */ #endif /* _LINUX_MMZONE_H */