/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2001 Jens Axboe */ #ifndef __LINUX_BIO_H #define __LINUX_BIO_H #include /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */ #include #include #define BIO_MAX_VECS 256U struct queue_limits; static inline unsigned int bio_max_segs(unsigned int nr_segs) { return min(nr_segs, BIO_MAX_VECS); } #define bio_prio(bio) (bio)->bi_ioprio #define bio_set_prio(bio, prio) ((bio)->bi_ioprio = prio) #define bio_iter_iovec(bio, iter) \ bvec_iter_bvec((bio)->bi_io_vec, (iter)) #define bio_iter_page(bio, iter) \ bvec_iter_page((bio)->bi_io_vec, (iter)) #define bio_iter_len(bio, iter) \ bvec_iter_len((bio)->bi_io_vec, (iter)) #define bio_iter_offset(bio, iter) \ bvec_iter_offset((bio)->bi_io_vec, (iter)) #define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter) #define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter) #define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter) #define bvec_iter_sectors(iter) ((iter).bi_size >> 9) #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter))) #define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter) #define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter) /* * Return the data direction, READ or WRITE. */ #define bio_data_dir(bio) \ (op_is_write(bio_op(bio)) ? WRITE : READ) /* * Check whether this bio carries any data or not. A NULL bio is allowed. */ static inline bool bio_has_data(struct bio *bio) { if (bio && bio->bi_iter.bi_size && bio_op(bio) != REQ_OP_DISCARD && bio_op(bio) != REQ_OP_SECURE_ERASE && bio_op(bio) != REQ_OP_WRITE_ZEROES) return true; return false; } static inline bool bio_no_advance_iter(const struct bio *bio) { return bio_op(bio) == REQ_OP_DISCARD || bio_op(bio) == REQ_OP_SECURE_ERASE || bio_op(bio) == REQ_OP_WRITE_ZEROES; } static inline void *bio_data(struct bio *bio) { if (bio_has_data(bio)) return page_address(bio_page(bio)) + bio_offset(bio); return NULL; } static inline bool bio_next_segment(const struct bio *bio, struct bvec_iter_all *iter) { if (iter->idx >= bio->bi_vcnt) return false; bvec_advance(&bio->bi_io_vec[iter->idx], iter); return true; } /* * drivers should _never_ use the all version - the bio may have been split * before it got to the driver and the driver won't own all of it */ #define bio_for_each_segment_all(bvl, bio, iter) \ for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); ) static inline void bio_advance_iter(const struct bio *bio, struct bvec_iter *iter, unsigned int bytes) { iter->bi_sector += bytes >> 9; if (bio_no_advance_iter(bio)) iter->bi_size -= bytes; else bvec_iter_advance(bio->bi_io_vec, iter, bytes); /* TODO: It is reasonable to complete bio with error here. */ } /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */ static inline void bio_advance_iter_single(const struct bio *bio, struct bvec_iter *iter, unsigned int bytes) { iter->bi_sector += bytes >> 9; if (bio_no_advance_iter(bio)) iter->bi_size -= bytes; else bvec_iter_advance_single(bio->bi_io_vec, iter, bytes); } void __bio_advance(struct bio *, unsigned bytes); /** * bio_advance - increment/complete a bio by some number of bytes * @bio: bio to advance * @nbytes: number of bytes to complete * * This updates bi_sector, bi_size and bi_idx; if the number of bytes to * complete doesn't align with a bvec boundary, then bv_len and bv_offset will * be updated on the last bvec as well. * * @bio will then represent the remaining, uncompleted portion of the io. */ static inline void bio_advance(struct bio *bio, unsigned int nbytes) { if (nbytes == bio->bi_iter.bi_size) { bio->bi_iter.bi_size = 0; return; } __bio_advance(bio, nbytes); } #define __bio_for_each_segment(bvl, bio, iter, start) \ for (iter = (start); \ (iter).bi_size && \ ((bvl = bio_iter_iovec((bio), (iter))), 1); \ bio_advance_iter_single((bio), &(iter), (bvl).bv_len)) #define bio_for_each_segment(bvl, bio, iter) \ __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter) #define __bio_for_each_bvec(bvl, bio, iter, start) \ for (iter = (start); \ (iter).bi_size && \ ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \ bio_advance_iter_single((bio), &(iter), (bvl).bv_len)) /* iterate over multi-page bvec */ #define bio_for_each_bvec(bvl, bio, iter) \ __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter) /* * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the * same reasons as bio_for_each_segment_all(). */ #define bio_for_each_bvec_all(bvl, bio, i) \ for (i = 0, bvl = bio_first_bvec_all(bio); \ i < (bio)->bi_vcnt; i++, bvl++) #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len) static inline unsigned bio_segments(struct bio *bio) { unsigned segs = 0; struct bio_vec bv; struct bvec_iter iter; /* * We special case discard/write same/write zeroes, because they * interpret bi_size differently: */ switch (bio_op(bio)) { case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: case REQ_OP_WRITE_ZEROES: return 0; default: break; } bio_for_each_segment(bv, bio, iter) segs++; return segs; } /* * get a reference to a bio, so it won't disappear. the intended use is * something like: * * bio_get(bio); * submit_bio(rw, bio); * if (bio->bi_flags ...) * do_something * bio_put(bio); * * without the bio_get(), it could potentially complete I/O before submit_bio * returns. and then bio would be freed memory when if (bio->bi_flags ...) * runs */ static inline void bio_get(struct bio *bio) { bio->bi_flags |= (1 << BIO_REFFED); smp_mb__before_atomic(); atomic_inc(&bio->__bi_cnt); } static inline void bio_cnt_set(struct bio *bio, unsigned int count) { if (count != 1) { bio->bi_flags |= (1 << BIO_REFFED); smp_mb(); } atomic_set(&bio->__bi_cnt, count); } static inline bool bio_flagged(struct bio *bio, unsigned int bit) { return bio->bi_flags & (1U << bit); } static inline void bio_set_flag(struct bio *bio, unsigned int bit) { bio->bi_flags |= (1U << bit); } static inline void bio_clear_flag(struct bio *bio, unsigned int bit) { bio->bi_flags &= ~(1U << bit); } static inline struct bio_vec *bio_first_bvec_all(struct bio *bio) { WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); return bio->bi_io_vec; } static inline struct page *bio_first_page_all(struct bio *bio) { return bio_first_bvec_all(bio)->bv_page; } static inline struct folio *bio_first_folio_all(struct bio *bio) { return page_folio(bio_first_page_all(bio)); } static inline struct bio_vec *bio_last_bvec_all(struct bio *bio) { WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); return &bio->bi_io_vec[bio->bi_vcnt - 1]; } /** * struct folio_iter - State for iterating all folios in a bio. * @folio: The current folio we're iterating. NULL after the last folio. * @offset: The byte offset within the current folio. * @length: The number of bytes in this iteration (will not cross folio * boundary). */ struct folio_iter { struct folio *folio; size_t offset; size_t length; /* private: for use by the iterator */ struct folio *_next; size_t _seg_count; int _i; }; static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio, int i) { struct bio_vec *bvec = bio_first_bvec_all(bio) + i; if (unlikely(i >= bio->bi_vcnt)) { fi->folio = NULL; return; } fi->folio = page_folio(bvec->bv_page); fi->offset = bvec->bv_offset + PAGE_SIZE * (bvec->bv_page - &fi->folio->page); fi->_seg_count = bvec->bv_len; fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count); fi->_next = folio_next(fi->folio); fi->_i = i; } static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio) { fi->_seg_count -= fi->length; if (fi->_seg_count) { fi->folio = fi->_next; fi->offset = 0; fi->length = min(folio_size(fi->folio), fi->_seg_count); fi->_next = folio_next(fi->folio); } else { bio_first_folio(fi, bio, fi->_i + 1); } } /** * bio_for_each_folio_all - Iterate over each folio in a bio. * @fi: struct folio_iter which is updated for each folio. * @bio: struct bio to iterate over. */ #define bio_for_each_folio_all(fi, bio) \ for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio)) void bio_trim(struct bio *bio, sector_t offset, sector_t size); extern struct bio *bio_split(struct bio *bio, int sectors, gfp_t gfp, struct bio_set *bs); struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, unsigned *segs, struct bio_set *bs, unsigned max_bytes); /** * bio_next_split - get next @sectors from a bio, splitting if necessary * @bio: bio to split * @sectors: number of sectors to split from the front of @bio * @gfp: gfp mask * @bs: bio set to allocate from * * Return: a bio representing the next @sectors of @bio - if the bio is smaller * than @sectors, returns the original bio unchanged. */ static inline struct bio *bio_next_split(struct bio *bio, int sectors, gfp_t gfp, struct bio_set *bs) { if (sectors >= bio_sectors(bio)) return bio; return bio_split(bio, sectors, gfp, bs); } enum { BIOSET_NEED_BVECS = BIT(0), BIOSET_NEED_RESCUER = BIT(1), BIOSET_PERCPU_CACHE = BIT(2), }; extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags); extern void bioset_exit(struct bio_set *); extern int biovec_init_pool(mempool_t *pool, int pool_entries); struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask, struct bio_set *bs); struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask); extern void bio_put(struct bio *); struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, gfp_t gfp, struct bio_set *bs); int bio_init_clone(struct block_device *bdev, struct bio *bio, struct bio *bio_src, gfp_t gfp); extern struct bio_set fs_bio_set; static inline struct bio *bio_alloc(struct block_device *bdev, unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask) { return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set); } void submit_bio(struct bio *bio); extern void bio_endio(struct bio *); static inline void bio_io_error(struct bio *bio) { bio->bi_status = BLK_STS_IOERR; bio_endio(bio); } static inline void bio_wouldblock_error(struct bio *bio) { bio_set_flag(bio, BIO_QUIET); bio->bi_status = BLK_STS_AGAIN; bio_endio(bio); } /* * Calculate number of bvec segments that should be allocated to fit data * pointed by @iter. If @iter is backed by bvec it's going to be reused * instead of allocating a new one. */ static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs) { if (iov_iter_is_bvec(iter)) return 0; return iov_iter_npages(iter, max_segs); } struct request_queue; extern int submit_bio_wait(struct bio *bio); void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, unsigned short max_vecs, blk_opf_t opf); extern void bio_uninit(struct bio *); void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf); void bio_chain(struct bio *, struct bio *); int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len, unsigned off); bool __must_check bio_add_folio(struct bio *bio, struct folio *folio, size_t len, size_t off); extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *, unsigned int, unsigned int); int bio_add_zone_append_page(struct bio *bio, struct page *page, unsigned int len, unsigned int offset); void __bio_add_page(struct bio *bio, struct page *page, unsigned int len, unsigned int off); void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len, size_t off); int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter); void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter); void __bio_release_pages(struct bio *bio, bool mark_dirty); extern void bio_set_pages_dirty(struct bio *bio); extern void bio_check_pages_dirty(struct bio *bio); extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, struct bio *src, struct bvec_iter *src_iter); extern void bio_copy_data(struct bio *dst, struct bio *src); extern void bio_free_pages(struct bio *bio); void guard_bio_eod(struct bio *bio); void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter); static inline void zero_fill_bio(struct bio *bio) { zero_fill_bio_iter(bio, bio->bi_iter); } static inline void bio_release_pages(struct bio *bio, bool mark_dirty) { if (bio_flagged(bio, BIO_PAGE_PINNED)) __bio_release_pages(bio, mark_dirty); } #define bio_dev(bio) \ disk_devt((bio)->bi_bdev->bd_disk) #ifdef CONFIG_BLK_CGROUP void bio_associate_blkg(struct bio *bio); void bio_associate_blkg_from_css(struct bio *bio, struct cgroup_subsys_state *css); void bio_clone_blkg_association(struct bio *dst, struct bio *src); void blkcg_punt_bio_submit(struct bio *bio); #else /* CONFIG_BLK_CGROUP */ static inline void bio_associate_blkg(struct bio *bio) { } static inline void bio_associate_blkg_from_css(struct bio *bio, struct cgroup_subsys_state *css) { } static inline void bio_clone_blkg_association(struct bio *dst, struct bio *src) { } static inline void blkcg_punt_bio_submit(struct bio *bio) { submit_bio(bio); } #endif /* CONFIG_BLK_CGROUP */ static inline void bio_set_dev(struct bio *bio, struct block_device *bdev) { bio_clear_flag(bio, BIO_REMAPPED); if (bio->bi_bdev != bdev) bio_clear_flag(bio, BIO_BPS_THROTTLED); bio->bi_bdev = bdev; bio_associate_blkg(bio); } /* * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. * * A bio_list anchors a singly-linked list of bios chained through the bi_next * member of the bio. The bio_list also caches the last list member to allow * fast access to the tail. */ struct bio_list { struct bio *head; struct bio *tail; }; static inline int bio_list_empty(const struct bio_list *bl) { return bl->head == NULL; } static inline void bio_list_init(struct bio_list *bl) { bl->head = bl->tail = NULL; } #define BIO_EMPTY_LIST { NULL, NULL } #define bio_list_for_each(bio, bl) \ for (bio = (bl)->head; bio; bio = bio->bi_next) static inline unsigned bio_list_size(const struct bio_list *bl) { unsigned sz = 0; struct bio *bio; bio_list_for_each(bio, bl) sz++; return sz; } static inline void bio_list_add(struct bio_list *bl, struct bio *bio) { bio->bi_next = NULL; if (bl->tail) bl->tail->bi_next = bio; else bl->head = bio; bl->tail = bio; } static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) { bio->bi_next = bl->head; bl->head = bio; if (!bl->tail) bl->tail = bio; } static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) { if (!bl2->head) return; if (bl->tail) bl->tail->bi_next = bl2->head; else bl->head = bl2->head; bl->tail = bl2->tail; } static inline void bio_list_merge_init(struct bio_list *bl, struct bio_list *bl2) { bio_list_merge(bl, bl2); bio_list_init(bl2); } static inline void bio_list_merge_head(struct bio_list *bl, struct bio_list *bl2) { if (!bl2->head) return; if (bl->head) bl2->tail->bi_next = bl->head; else bl->tail = bl2->tail; bl->head = bl2->head; } static inline struct bio *bio_list_peek(struct bio_list *bl) { return bl->head; } static inline struct bio *bio_list_pop(struct bio_list *bl) { struct bio *bio = bl->head; if (bio) { bl->head = bl->head->bi_next; if (!bl->head) bl->tail = NULL; bio->bi_next = NULL; } return bio; } static inline struct bio *bio_list_get(struct bio_list *bl) { struct bio *bio = bl->head; bl->head = bl->tail = NULL; return bio; } /* * Increment chain count for the bio. Make sure the CHAIN flag update * is visible before the raised count. */ static inline void bio_inc_remaining(struct bio *bio) { bio_set_flag(bio, BIO_CHAIN); smp_mb__before_atomic(); atomic_inc(&bio->__bi_remaining); } /* * bio_set is used to allow other portions of the IO system to * allocate their own private memory pools for bio and iovec structures. * These memory pools in turn all allocate from the bio_slab * and the bvec_slabs[]. */ #define BIO_POOL_SIZE 2 struct bio_set { struct kmem_cache *bio_slab; unsigned int front_pad; /* * per-cpu bio alloc cache */ struct bio_alloc_cache __percpu *cache; mempool_t bio_pool; mempool_t bvec_pool; #if defined(CONFIG_BLK_DEV_INTEGRITY) mempool_t bio_integrity_pool; mempool_t bvec_integrity_pool; #endif unsigned int back_pad; /* * Deadlock avoidance for stacking block drivers: see comments in * bio_alloc_bioset() for details */ spinlock_t rescue_lock; struct bio_list rescue_list; struct work_struct rescue_work; struct workqueue_struct *rescue_workqueue; /* * Hot un-plug notifier for the per-cpu cache, if used */ struct hlist_node cpuhp_dead; }; static inline bool bioset_initialized(struct bio_set *bs) { return bs->bio_slab != NULL; } /* * Mark a bio as polled. Note that for async polled IO, the caller must * expect -EWOULDBLOCK if we cannot allocate a request (or other resources). * We cannot block waiting for requests on polled IO, as those completions * must be found by the caller. This is different than IRQ driven IO, where * it's safe to wait for IO to complete. */ static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb) { bio->bi_opf |= REQ_POLLED; if (kiocb->ki_flags & IOCB_NOWAIT) bio->bi_opf |= REQ_NOWAIT; } static inline void bio_clear_polled(struct bio *bio) { bio->bi_opf &= ~REQ_POLLED; } struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, unsigned int nr_pages, blk_opf_t opf, gfp_t gfp); struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new); struct bio *blk_alloc_discard_bio(struct block_device *bdev, sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask); #endif /* __LINUX_BIO_H */