/* * Copyright (c) 2013, Kenneth MacKay * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _CRYPTO_ECC_H #define _CRYPTO_ECC_H #include #include /* One digit is u64 qword. */ #define ECC_CURVE_NIST_P192_DIGITS 3 #define ECC_CURVE_NIST_P256_DIGITS 4 #define ECC_CURVE_NIST_P384_DIGITS 6 #define ECC_CURVE_NIST_P521_DIGITS 9 #define ECC_MAX_DIGITS DIV_ROUND_UP(521, 64) /* NIST P521 */ #define ECC_DIGITS_TO_BYTES_SHIFT 3 #define ECC_MAX_BYTES (ECC_MAX_DIGITS << ECC_DIGITS_TO_BYTES_SHIFT) #define ECC_POINT_INIT(x, y, ndigits) (struct ecc_point) { x, y, ndigits } /** * ecc_swap_digits() - Copy ndigits from big endian array to native array * @in: Input array * @out: Output array * @ndigits: Number of digits to copy */ static inline void ecc_swap_digits(const void *in, u64 *out, unsigned int ndigits) { const __be64 *src = (__force __be64 *)in; int i; for (i = 0; i < ndigits; i++) out[i] = get_unaligned_be64(&src[ndigits - 1 - i]); } /** * ecc_digits_from_bytes() - Create ndigits-sized digits array from byte array * @in: Input byte array * @nbytes Size of input byte array * @out Output digits array * @ndigits: Number of digits to create from byte array * * The first byte in the input byte array is expected to hold the most * significant bits of the large integer. */ void ecc_digits_from_bytes(const u8 *in, unsigned int nbytes, u64 *out, unsigned int ndigits); /** * ecc_is_key_valid() - Validate a given ECDH private key * * @curve_id: id representing the curve to use * @ndigits: curve's number of digits * @private_key: private key to be used for the given curve * @private_key_len: private key length * * Returns 0 if the key is acceptable, a negative value otherwise */ int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits, const u64 *private_key, unsigned int private_key_len); /** * ecc_gen_privkey() - Generates an ECC private key. * The private key is a random integer in the range 0 < random < n, where n is a * prime that is the order of the cyclic subgroup generated by the distinguished * point G. * @curve_id: id representing the curve to use * @ndigits: curve number of digits * @private_key: buffer for storing the generated private key * * Returns 0 if the private key was generated successfully, a negative value * if an error occurred. */ int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *private_key); /** * ecc_make_pub_key() - Compute an ECC public key * * @curve_id: id representing the curve to use * @ndigits: curve's number of digits * @private_key: pregenerated private key for the given curve * @public_key: buffer for storing the generated public key * * Returns 0 if the public key was generated successfully, a negative value * if an error occurred. */ int ecc_make_pub_key(const unsigned int curve_id, unsigned int ndigits, const u64 *private_key, u64 *public_key); /** * crypto_ecdh_shared_secret() - Compute a shared secret * * @curve_id: id representing the curve to use * @ndigits: curve's number of digits * @private_key: private key of part A * @public_key: public key of counterpart B * @secret: buffer for storing the calculated shared secret * * Note: It is recommended that you hash the result of crypto_ecdh_shared_secret * before using it for symmetric encryption or HMAC. * * Returns 0 if the shared secret was generated successfully, a negative value * if an error occurred. */ int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits, const u64 *private_key, const u64 *public_key, u64 *secret); /** * ecc_is_pubkey_valid_partial() - Partial public key validation * * @curve: elliptic curve domain parameters * @pk: public key as a point * * Valdiate public key according to SP800-56A section 5.6.2.3.4 ECC Partial * Public-Key Validation Routine. * * Note: There is no check that the public key is in the correct elliptic curve * subgroup. * * Return: 0 if validation is successful, -EINVAL if validation is failed. */ int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, struct ecc_point *pk); /** * ecc_is_pubkey_valid_full() - Full public key validation * * @curve: elliptic curve domain parameters * @pk: public key as a point * * Valdiate public key according to SP800-56A section 5.6.2.3.3 ECC Full * Public-Key Validation Routine. * * Return: 0 if validation is successful, -EINVAL if validation is failed. */ int ecc_is_pubkey_valid_full(const struct ecc_curve *curve, struct ecc_point *pk); /** * vli_is_zero() - Determine is vli is zero * * @vli: vli to check. * @ndigits: length of the @vli */ bool vli_is_zero(const u64 *vli, unsigned int ndigits); /** * vli_cmp() - compare left and right vlis * * @left: vli * @right: vli * @ndigits: length of both vlis * * Returns sign of @left - @right, i.e. -1 if @left < @right, * 0 if @left == @right, 1 if @left > @right. */ int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits); /** * vli_sub() - Subtracts right from left * * @result: where to write result * @left: vli * @right vli * @ndigits: length of all vlis * * Note: can modify in-place. * * Return: carry bit. */ u64 vli_sub(u64 *result, const u64 *left, const u64 *right, unsigned int ndigits); /** * vli_from_be64() - Load vli from big-endian u64 array * * @dest: destination vli * @src: source array of u64 BE values * @ndigits: length of both vli and array */ void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits); /** * vli_from_le64() - Load vli from little-endian u64 array * * @dest: destination vli * @src: source array of u64 LE values * @ndigits: length of both vli and array */ void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits); /** * vli_mod_inv() - Modular inversion * * @result: where to write vli number * @input: vli value to operate on * @mod: modulus * @ndigits: length of all vlis */ void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, unsigned int ndigits); /** * vli_mod_mult_slow() - Modular multiplication * * @result: where to write result value * @left: vli number to multiply with @right * @right: vli number to multiply with @left * @mod: modulus * @ndigits: length of all vlis * * Note: Assumes that mod is big enough curve order. */ void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right, const u64 *mod, unsigned int ndigits); /** * vli_num_bits() - Counts the number of bits required for vli. * * @vli: vli to check. * @ndigits: Length of the @vli * * Return: The number of bits required to represent @vli. */ unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits); /** * ecc_aloc_point() - Allocate ECC point. * * @ndigits: Length of vlis in u64 qwords. * * Return: Pointer to the allocated point or NULL if allocation failed. */ struct ecc_point *ecc_alloc_point(unsigned int ndigits); /** * ecc_free_point() - Free ECC point. * * @p: The point to free. */ void ecc_free_point(struct ecc_point *p); /** * ecc_point_is_zero() - Check if point is zero. * * @p: Point to check for zero. * * Return: true if point is the point at infinity, false otherwise. */ bool ecc_point_is_zero(const struct ecc_point *point); /** * ecc_point_mult_shamir() - Add two points multiplied by scalars * * @result: resulting point * @x: scalar to multiply with @p * @p: point to multiply with @x * @y: scalar to multiply with @q * @q: point to multiply with @y * @curve: curve * * Returns result = x * p + x * q over the curve. * This works faster than two multiplications and addition. */ void ecc_point_mult_shamir(const struct ecc_point *result, const u64 *x, const struct ecc_point *p, const u64 *y, const struct ecc_point *q, const struct ecc_curve *curve); #endif