/* Stan Highlighting Example
This file contains a syntatically correct but nonsensical Stan program that
includes almost every feature of the language needed to validate syntax
highlighters. It will compile (as of Stan 2.17.1), but it does nothing
useful.
Author: Jeffrey Arnold
Copyright: Jeffrey Arnold (2018)
License: MIT
*/
// line comment
# deprecated line comment
functions {
#include stuff.stan
#include "morestuff.stan"
#include 'moststuff.stan'
#include
// declarations
void oof(real x);
// definitions
// return types
void oof(real x) {
print("print ", x);
}
/*
@param x A number
@return x + 1
*/
real foo(real x) {
return x;
}
int bar(int x) {
return x;
}
vector baz(vector x) {
return x;
}
row_vector qux(row_vector x) {
return x;
}
matrix quux(matrix x) {
return x;
}
// numbers of arguments
void corge() {
print("no parameters");
}
void grault(int a, real b, vector c, row_vector d, matrix f) {
print("many parameters");
}
void garply(real a, real[] b, real[,] c, real[,,] d) {
print("array arguments");
}
// array return types
int[] waldo(int[] x) {
return x;
}
int[,] fred(int[,] x) {
return x;
}
int[,,] plough(int[,,] x) {
return x;
}
// data only function argument
real plugh(data real x) {
return x;
}
// ode function
real[] ode_func(real a, real[] b, real[] c, real[] d, int[] e) {
return b;
}
}
data {
// non-int variable types
int x_int;
real x_real;
real y_real;
vector[1] x_vector;
ordered[1] x_ordered;
positive_ordered[1] x_positive_ordered;
simplex[1] x_simplex;
unit_vector[1] x_unit_vector;
row_vector[1] x_row_vector;
matrix[1, 1] x_matrix;
cholesky_factor_corr[2] x_cholesky_factor_corr;
cholesky_factor_cov[2] x_cholesky_factor_cov;
cholesky_factor_cov[2, 3] x_cholesky_factor_cov_2;
corr_matrix[2] x_corr_matrix;
cov_matrix[2] x_cov_matrix;
// range constraints
real alpha;
real bravo;
real charlie;
// arrays
int echo[1];
int foxtrot[1, 1];
int golf[1, 1, 1];
// identifier with all valid letters
real abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_0123456789;
// hard pattern
real charlie)> ranger;
// identifier patterns
real a;
real a3;
real a_3;
real Sigma;
real my_cpp_style_variable;
real myCamelCaseVariable;
real abcdefghijklmnojk;
// names beginning with keywords
real iffffff;
real whilest;
// name ending with truncation
real fooT;
// new array syntax
array [N] real foo_new;
}
transformed data {
// declaration and assignment
int india = 1;
real romeo = 1.0;
row_vector[2] victor = [1, 2];
matrix[2, 2] mike = [[1, 2], [3, 4]];
real sierra[2] = {1., 2.};
complex zulu = 3+4.1i;
}
parameters {
real hotel;
real alpha;
}
transformed parameters {
real juliette;
juliette = hotel * 2.;
}
model {
real x;
int k;
vector[2] y = [1., 1.]';
matrix[2, 2] A = [[1., 1.], [1., 1.]];
real odeout[2, 2];
real algout[2, 2];
// if else statements
if (x_real < 0) x = 0.;
if (x_real < 0) {
x = 0.;
}
if (x_real < 0) x = 0.;
else x = 1.;
if (x_real < 0) {
x = 0.;
} else {
x = 1.;
}
if (x_real < 0) x = 0.;
else if (x_real > 1) x = 1.;
else x = 0.5;
if (x_real < 0) {
x = 0.;
} else if (x_real > 1) {
x = 1.;
} else {
x = 0.5;
}
// for loops
for (i in 1:5) {
print("i = ", i);
}
// for (j in echo) {
// print("j = ", j);
// }
// while loop
while (1) {
break;
continue;
}
// reject statement
reject("reject statment ", x_real);
// print statement
print("print statement ", x_real);
print("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_~@#$%^&*`'-+={}[].,;: ");
// increment log probability statements;
target += 1.;
// valid integer literals
k = 0;
k = 1;
k = -1;
k = 256;
k = -127098;
k = 007;
// valid real literals
x = 0.0;
x = 1.0;
x = 3.14;
x = 003.14;
x = -217.9387;
x = 0.123;
x = .123;
x = 1.;
x = -0.123;
x = -.123;
x = -1.;
x = 12e34;
x = 12E34;
x = 12.e34;
x = 12.E34;
x = 12.0e34;
x = 12.0E34;
x = .1e34;
x = .1E34;
x = -12e34;
x = -12E34;
x = -12.e34;
x = -12.E34;
x = -12.0e34;
x = -12.0E34;
x = -.1e34;
x = -.1E34;
x = 12e-34;
x = 12E-34;
x = 12.e-34;
x = 12.E-34;
x = 12.0e-34;
x = 12.0E-34;
x = .1e-34;
x = .1E-34;
x = -12e-34;
x = -12E-34;
x = -12.e-34;
x = -12.E-34;
x = -12.0e-34;
x = -12.0E-34;
x = -.1e-34;
x = -.1E-34;
x = 12e+34;
x = 12E+34;
x = 12.e+34;
x = 12.E+34;
x = 12.0e+34;
x = 12.0E+34;
x = .1e+34;
x = .1E+34;
x = -12e+34;
x = -12E+34;
x = -12.e+34;
x = -12.E+34;
x = -12.0e+34;
x = -12.0E+34;
x = -.1e+34;
x = -.1E+34;
// imaginary literals
complex z = 3 + 3i;
z = 2.3i;
z = 3.4e10i;
z = 0i;
// assignment statements
x = 1;
x += 1.;
x -= 1.;
x *= 1.;
x /= 1.;
y .*= x_vector;
y ./= x_vector;
// operators
x = x_real && 1;
x = x_real || 1;
x = x_real < 1.;
x = x_real <= 1.;
x = x_real > 1.;
x = x_real >= 1.;
x = x_real + 1.;
x = x_real - 1.;
x = x_real * 1.;
x = x_real / 1.;
x = x_real ^ 2.;
x = x_real % 2;
x = !x_real;
x = +x_real;
x = -x_real;
x = x_int ? x_real : 0.;
y = x_row_vector';
y = x_matrix \ x_vector;
y = x_vector .* x_vector;
y = x_vector ./ x_vector;
// parenthized expression
x = (x_real + x_real);
// block statement
{
real z;
z = 1.;
}
profile("profile-test") {
real z;
z = 1.;
}
// built-in functions
x = log(1.);
x = exp(1.);
// non-built-in function
x = foo(1.);
// constants and nullary functions
x = machine_precision();
x = pi();
x = e();
x = sqrt2();
x = log2();
x = log10();
// special values
x = not_a_number();
x = positive_infinity();
x = negative_infinity();
x = machine_precision();
// log probability
x = target();
// sampling statement
x_real ~ normal(0., 1.);
// truncation
x_real ~ normal(0., 1.) T[-1., 1.];
x_real ~ normal(0., 1.) T[, 1.];
x_real ~ normal(0., 1.) T[-1., ];
x_real ~ normal(0., 1.) T[ , ];
// transformation on lhs of sampling
log(x_real) ~ normal(0., 1.);
// lhs indexes
y[1] = 1.;
A[1, 2] = 1.;
A[1][2] = 1.;
// special functions
odeout = integrate_ode(ode_func, {1.}, x_real, {1.}, {1.}, {1.}, {0});
odeout = integrate_ode_bdf(ode_func, {1.}, x_real, {1.}, {1.}, {1.}, {0},
x_real, x_real, x_int);
odeout = integrate_ode_rk45(ode_func, {1.}, x_real, {1.}, {1.}, {1.}, {0},
x_real, x_real, x_int);
// algout = algebra_solver(algebra_func, x_vector, x_vector, {1.}, {0});
// distribution functions
x = normal_lpdf(0.5 | 0., 1.);
x = normal_cdf(0.5, 0., 1.);
x = normal_lcdf(0.5 | 0., 1.);
x = normal_lccdf(0.5 | 0., 1.);
x = binomial_lpmf(1 | 2, 0.5);
// deprecated features
foo <- 1;
increment_log_prob(0.0);
y_hat = integrate_ode(sho, y0, t0, ts, theta, x_r, x_i);
x = get_lp();
x = multiply_log(1.0, 1.0);
x = binomial_coefficient_log(1.0, 1.0);
// deprecated distribution functions versions
x = normal_log(0.5, 0.0, 1.0);
x = normal_cdf_log(0.5, 0.0, 1.0);
x = normal_ccdf_log(0.5, 0.0, 1.0);
}
generated quantities {
real Y;
// rng function
Y = normal_rng(0., 1.);
tuple(real, int) tupl = (1.5, 2);
complex_matrix C_mike = mike;
}